Technology Toolbox

Using the definition to calculate correlation

Freshmen at the Webb Schools go on a backpacking trip at the start of each school year. Students are divided into hiking groups of size 8 by selecting names from a hat. Prior to departure, each student's body weight and backpack weight are measured (both in pounds). Here are data from one hiking group in a recent year:

Body weight (lb):	120	187	109	103	131	165	158	116
Backpack weight (lb):	26	30	26	24	29	. 35	31	28

We will use these data to show how to calculate the correlation using the definition and the list features of the TI-83/84/89.

• Begin by entering the body weights (x-values) in L1/list1 and the backpack weights (y-values) in L2/list2. Then calculate two-variable statistics for the xand y-values. The calculator will remember all of the computed statistics until the next time you calculate one- or two-variable statistics.

TI-83/84

TI-89

- Press STAT, choose CALC, then In the Statistics/List Editor, press 2:2-Var Stats.
 - and choose 2:2-Var Stats.
- Complete the command 2-Var Stats In the new window, enter list as the Xlist L1, L2 and press TITE

2-Var Stats x=136.125 Σx=1089 Σx²=154665 Sx=30.29586252 ox=28.33918444 ln=8

2-Var Stats ↑y=28.625 Σy=229 Σy²=6639 Sy=3.461523199 oy=3.237958462 xy=31756

• Define $L_3 = ((L_1 - \bar{x})/s_x)$ and $L_4 = ((L_2 - \bar{y})/s_y)$

and list2 as the Ylist, then press and

• Define list3 = $((list1 - \bar{x})/s_x)$, and $list4 = ((list2 - \bar{y})/s_{\nu})$

from the home screen as shown. Note that \bar{x} , \bar{y} , s_x , and s_y can be found under VARS/5:Statistics (in the VAR-LINK menu on the TI-89).

Go into the Statistics/List Editor to look at the results. The first student listed has a body weight of 120 lb. and a backpack weight of 26 lb. In Γ_3 , we see that his standardized body weight is $\frac{120-136.125}{20.206} = -0.53$. In other words, his weight is 0.53 standard deviations below the mean body weight for this group of 8 hikers. In L4, we see that the z-score for his pack weight is $z = \frac{26 - 28.625}{2.467} = -0.76$. So his pack weight is 0.76 standard deviations below the mean backpack weight for the group.

26 30 1.6793 .39722 26 -8953 -7583 24 -1.093 -1.336 29 -1.692 35 .9531 31 .72205 .68611	L2	L3	L4 3	3
	30 26 24 29 35	8953 -1.093 1692 .9531	.39722 7583 -1.336 .10833 1.8417	

TIT FIT FIT FOT FOT FOT FIT Tools Flots List Calc Distr Tests Inte				
list1	list2	list3	list4	
120. 187. 109. 103. 131. 165.	26. 30. 26. 24. 29. 35.	1.6793 8953 -1.093 -1.692 .9531	7583 .39722 7583 -1.336 .10833 1.8417	
list3[1]=53225089697902				
STATUARS RAD APPROY PUNC 3/11				

(continued)

Using the definition to calculate correlation (continued)

L3	L4	Œ	5
7.5323 1.6793 8953 -1.093 1692 .9531 .72205	-1.336	.66705 .67897 1.4609 0183 1.7553	
L5=L3*I	4		_

riv Fiv	PJV P4V P	TET TOSTS INTO	Ý –
list2	list3	list4	11931
26. 30. 26. 24. 29. 35.	5323 1.6793 8953 -1.093 1692 .9531	7583 .39722 7583 -1.336 .10833 1.8417	.40363 .66705 .67897 1.4609 0183 1.7553
list5=list3*list4			
STATUARS RAD APPROX FUNC 5/11			

• To finish calculating the correlation $r = \frac{1}{n-1} \sum_{s} \left(\frac{x-\overline{x}}{s_x} \right) \left(\frac{y-\overline{y}}{s_y} \right)$, we just need to add up the values in L₅/list5 and then to divide by 7. To do this, enter the command shown in the appropriate calculator screen. Press **ENTER** to see the correlation.

(1/(8-1))*sum(L5
.7946926677

Tools Algebra Calc Other Prom	Y FSY IO Clean Up
$\frac{1}{8-1} \cdot \text{sum}(\text{list5})$	i) 94692667734
	SC5))
STATVARS RAD APPR	OX FUNC 1/30